ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS

نویسندگان

  • Mohsen Shekarbaigi Iran, Islamic Republic of
  • Nemat Nyamoradi Iran, Islamic Republic of
چکیده مقاله:

In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variational method, we obtain the existence non-trivialweek solution for the system

Download for Free

Sign up for free to access the full text

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents

This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...

متن کامل

On a Class of Quasilinear Elliptic Systems in R Involving Critical Sobolev Exponents

We study here a class of quasilinear elliptic systems involving the p-Laplacian operator. Under some suitable assumptions on the nonlinearities, we show the existence result by using a fixed point theorem.

متن کامل

The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent

In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.

متن کامل

Quasilinear Elliptic Equations with Critical Exponents

has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...

متن کامل

Quasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$

‎We study the existence of soliton solutions for a class of‎ ‎quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth‎. ‎This model has been proposed in the self-channeling of a‎ ‎high-power ultra short laser in matter‎.

متن کامل

Existence result for semilinear elliptic systems involving critical exponents

where ⊂RN (N ≥ ) is a smooth bounded domain such that ξi ∈ , i = , , . . . ,k, k ≥ , are different points, ≤ μi < μ̄ := (N–  ), L := – · – ∑k i=μi · |x–ξi| , η,λ,σ ≥ , a,a,a ∈ R,  < α, β < ∗ – , α + β = ∗. We work in the product space H ×H , where the space H :=H ( ) is the completion of C∞  ( ) with respect to the norm ( ∫ |∇ · | dx)   . In resent years many publications...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 3  شماره 3 (SUMMER)

صفحات  217- 236

تاریخ انتشار 2013-03-21

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023